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Image denoising exploiting inter- and intra-scale
dependency in complex wavelet domain
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A new locally adaptive image denoising method, which exploits the intra-scale and inter-scale dependency
in the dual-tree complex wavelet domain, is presented. Firstly, a recently emerged bivariate shrinkage rule
is extended to a complex coefficient and its neighborhood, the corresponding nonlinear threshold functions
are derived from the models using Bayesian estimation theory. Secondly, an adaptive weight, which is able
to capture the inter-scale dependency of the complex wavelet coefficients, is combined to the obtained
bishrink threshold. The experimental results demonstrate an improved denoising performance over related
earlier techniques both in peak signal-to-noise ratio (PSNR) and visual effect.
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An image is often corrupted by noise in its acquisition or
transmission and noise elimination is a main concern in
computer vision and image processing. In image denois-
ing, a compromise has to be found between noise reduc-
tion and preserving significant image details. To achieve
a good performance in this respect, a denoising algo-
rithm has to be adapted to image discontinuities. The
wavelet representation naturally facilitates the construc-
tion of such spatially adaptive algorithms. Smooth im-
age regions are represented by small wavelet coefficients,
while edges, ridges, and other singularities are repre-
sented by large coefficients. Because of this property,
additive noise can be effectively suppressed by simple
thresholding[1] of the wavelet coefficients.

Recently, statistical approach has emerged as a new
tool for wavelet-based denoising. The basic idea is to
model wavelet transform coefficients with prior proba-
bility distributions. Statistical models pretended wavelet
coefficients are random variables described by some
probability distribution. Most models assume that the
coefficients are independent and try to characterize them
by using Gaussian, Laplacian, generalized Gaussian, or
other distributions. Although the wavelet transform
nearly decorrelates many images, significant dependen-
cies still exist between wavelet coefficients[2]. Algorithms
that exploit the dependency between coefficients can give
better results compared with the ones derived by using
an independence assumption. For example, Crouse et
al.[3] developed a new framework to capture the sta-
tistical dependencies by using wavelet-domain hidden
Markov tree (HMT) models. New bivariate shrinkage[4]

functions were proposed by considering the dependen-
cies between the coefficients and their parents. Chen et
al.[5] introduced an efficient, adaptive threshold denois-
ing algorithm via wavelet soft-thresholding by exploiting
the inter-scale persistence. In addition, an information-
theoretic analysis of statistical dependencies between
wavelet coefficients is described by Liu et al.[6].

However, current wavelet-based image denoising algo-
rithms have a tendency to produce denoised images with
ringing artifacts around the edges. The main reason is

that the traditional critically sampled wavelet transform
is not shift-invariant and has not good directional se-
lectivity. The dual-tree complex wavelet transform[7,8]

(DT-CWT) is a good way to counteract these problems.
Sendur et al.[4] applied one bivariate shrinkage function
to the magnitude of the DT-CWT coefficients and ob-
tained better denoising performance than using it with
the critically sampled wavelet. Wang et al.[9] also used
this bivariate shrinkage rule with different thresholds
in dual-tree complex wavelet domain to reduce noise in
their noisy image enhancement method. There are strong
dependencies between neighbor coefficients such as be-
tween a coefficient and their siblings (adjacent spatial
locations), and its parent (adjacent coarser scale loca-
tions). But both Sendur and Wang’s algorithms only
consider the correlations between the coefficients and
their parents, i.e., the inter-scale dependencies. In this
paper, we address the image denoising problem by ex-
ploiting the intra-scale and the inter-scale dependencies
simultaneously in the complex wavelet domain. In or-
der to make use of the intra-scale dependency between
coefficients, the non-Gaussian bivariate model[4] is ex-
tended to a coefficient and its neighborhood, and the cor-
responding nonlinear threshold function is derived from
the model using Bayesian estimation theory. And then,
we investigate the coefficients statistics in the dual-tree
complex wavelet domain to obtain an adaptive weight to
capture the inter-scale dependencies. Lastly, we integrate
the adaptive weight to the bishrink threshold to obtain
our denoising algorithm.

DT-CWT is a valuable enhancement to the traditional
real discrete wavelet transform (DWT), with important
additional properties: it is nearly shift invariant and di-
rectionally selective in two and higher dimensions. These
two properties are very favorable to the image denoising
application. The DT-CWT can give a substantial perfor-
mance boost to DWT-based noise reduction algorithms.
Furthermore, denoising algorithms based on statistical
models of wavelet coefficients can be more effective for
the CWT than for the real DWT because the magnitudes
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of the coefficients are more dependent in inter-scale and
intra-scale neighborhoods[8,10].

The performance gains provided by the DT-CWT come
from designing the filters in the two filter banks ap-
proximately. The coefficients produced by these filter
banks are the real and imaginary parts of a complex
coefficient. Assume the sets of coefficients ui and vi

are produced by these filter banks separately, and the
complex coefficients can be represented by ci = ui + ivi.
The property of near shift invariance means that small
signal shifts do not affect the magnitudes of the com-
plex coefficients (|ci| =

√
u2

i + v2
i ). The basis func-

tions have directional selectivity property at ±15◦, ±45◦,
±75◦, which the regular critically sampled transform
does not have. And there are six high-frequency direc-
tional subbands at each level in the decomposition of two-
dimensional (2D) image.

Firstly, we mainly focus on the dependencies between
a coefficient and its siblings (neighborhood in the same
subband), i.e., the intra-scale dependencies. Consider
an image subband and define the neighborhood N X
as the collection of the eight coefficients adjacent to
X [6]. To avoid the so-called curse of dimensional-
ity, we would like to assume that the neighborhood
N X = {N X1, · · · , N X8} provides information to X
only through a many-to-one scalar function T = f(N X)
in the sense that equality of the corresponding mutual
information, i.e., I(X ; N X) = I(X ; T ), where I(·) rep-
resent the mutual information[6]. Simoncelli[11] assumed
that the squared magnitude of the current coefficient can
be linearly predicted from that of its neighbors at the
same scale. His model was a nonlinear Markov model
which can be stated as follows. The statistic T is a
weighted average of

{
|N Xi|2

}
, and X is Gaussian con-

ditioned on T . We consider the equal weights Wi = 1/8.
Here T is an unbiased estimate of the variance of X

T = f(N X) =
∑

i

Wi |N Xi|2 , (1)

where N X is a neighborhood of X (excluding X).
In this paper, the denoising of an image corrupted by

additive independent white Gaussian noise with variance
σ2

n will be considered. Let w2 represents the neighbor-
hood complex wavelet coefficients of w1 (w2 is computed
in terms of Eq. (1)). We formulate the problem in the
complex wavelet domain as y1 = w1+n1 and y2 = w2+n2

to take into account the statistical dependencies between
a coefficient and its neighborhood. y1, y2 are noisy ob-
servations of w1, w2, respectively; and n1, n2 are noise
sample. We can write y = w + n, with w = (w1, w2),
y = (y1, y2), n = (n1, n2).

The standard MAP estimator for w giving the cor-
rupted observation y is

ŵ(y) = arg max
w

pw|y(w|y). (2)

According to the property of conditional probability,
this equation can be written as

ŵ(y) = argmax
w

[pn(y − w) · pw(w)]. (3)

We assume the noise is i.i.d. Gaussian, and the noise

pdf is

pn(n) =
1

2πσ2
n

· exp
(
−n2

1 + n2
2

2σ2
n

)
. (4)

We use the non-Gaussian bivariate model proposed
by Sendur[4] to represent the dependency between a
coefficient and its neighborhood, i.e.

pw(w) =
3

2πσ2
s

· exp

(
−
√

3
σs

√
w2

1 + w2
2

)
, (5)

where σs represents the standard deviation of the noisy-
free wavelet coefficients. Using Eqs. (3)—(5), after some
manipulations, the maximum a posterior (MAP) estima-
tor of w1 is derived to be

ŵ1 =

(√
y2
1 + y2

2 −
√

3σ2
n

σs

)
+√

y2
1 + y2

2

· y1. (6)

In fact, this is a bivariate (coefficient and its neighbor-
hood) shrink with threshold Tbishrink =

√
3σ2

n/σs. And
in Ref. [9], Wang used bivariate (coefficient and its par-
ent) shrink in dual-tree complex wavelet domain with
threshold Tbishrink = σ2

n/σs for noise reduction.
A typical image usually consists of smooth regions sep-

arated by a few singularities. This results in a 1/f -type
spectral behavior, which leads to the variances of the
magnitudes of the complex wavelet coefficients tending
to decay exponentially across scales. Similar to Chen’s
method[5], we investigate this property in dual-tree com-
plex wavelet domain. The statistics of the inter-scale
dependency of the complex wavelet coefficients is il-
lustrated in Fig. 1, where σ̄s is the average standard
deviation of six subbands of complex wavelet coefficients
of the DT-CWT. For a number of images it is found
that f(s) = Cβs, β = 2 shows the best match in the
least-squares sense.

In addition, the distribution of standard deviations
of the true and noisy image coefficients across scale is
shown in Fig. 2. It can be seen that the difference be-
tween the plots of noise-free and noisy σ̄s is significant
only in the lower scales, which indicates that the higher
the scale value s, the higher the signal component on
average. Therefore, for the thresholding algorithm of Eq.
(6), we give lower weighs to the higher scales and higher

Fig. 1. Average standard deviations σs versus scale of com-
plex wavelet coefficients s for different images.
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Fig. 2. Average standard deviations of original and noisy im-
ages versus scale of complex wavelet coefficients s.

weights to the lower scales. According to the average sig-
nal level distribution across scales and the average stan-
dard deviation of original and noisy images, we propose
a new adaptive threshold as

Tnew =
1∑

s 2−s
2−(σ2

s,j/σn)·s · Tbishrink, (7)

where σs,j is the standard deviation of the noise-free com-
plex coefficients in subband j for scale s, and σn is the
standard deviation of the noise, which is estimated from
the finest scale wavelet coefficients[1]

σ̂2
n = median(|yi|)/0.6475,

yi ∈ subband of 45◦ in the finest scale. (8)

We can see that, of the new thresholding expression
in our new bivariate model, the weights before Tbishrink,

1�
s 2−s 2−(σ2

s,j/σn)·s exploits the inter-scale dependency.
Then, we can summarize our new denoising algorithm

as follows. 1) Perform an L-level 2D DT-CWT for
a noisy image I to get 6L + 2 noisy complex wavelet
coefficients subbands (there are two low-frequency sub-
bands and 6 high-frequency subbands for each scale s),
and estimate the noise variance using Eq. (8). 2) Us-
ing Eq. (1) to calculate the neighborhood coefficient of
the coefficients in each high-frequency subband for each
scale s. 3) At each high-frequency subband for scale
s, calculate the noise-free signal variance σs by an ap-
proximate maximum likelihood (ML) estimator: σ̂s =√

max
(
0, 1

M ·∑i∈N(k) real(y[i])2 − σ2
n

)
, where N(k) is

the neighborhood of the coefficients considered and M
is the number of the coefficients in N(k). 4) Calcu-
late the new adaptive threshold Tnew using Eq. (7) in
each high-frequency subband, and estimate the denoised
coefficients in terms of Eq. (6), in which the threshold
term Tbishrink =

√
3σ2

n/σs is replaced by Tnew. 5) Per-
form the inverse DT-CWT to get the reconstructed de-
noised image Î.

In the experiments, we used three 512 × 512 stan-
dard test grayscale images, namely, Lena, Boat, and Bar-
bara. The proposed algorithm was tested using different
noise levels σn = 10, 20, and 30 and compared with
adaptive threshold+DWT[5], HMT[3] , Wang’s CWT
denoising[9] and BiShrink+CWT[4]. Performance analy-
sis is done using the peak signal-to-noise ratio (PSNR) of
10 lg(2552/mean squared error) measure. The quantita-
tive results are listed in Table 1. From it we can see that
our method outperforms the other related algorithms,
in which Wang’s CWT denoising and Bishrink+CWT
are also based on the dual-tree complex wavelet. Figure
3 provides a visual comparison of denoised Lena image
with different methods. It is clear that, in comparison
with other methods, our algorithm got a better compro-
mise in noise reduction and preserving significant image
edges and details. In the other hand, our method can
efficiently remove the “ringing” of the edge region which
is presented in the wavelet-based methods.

The experimental results show that the proposed algo-
rithm achieves much better performance than some other

Fig. 3. Comparisons of denoising results on Lena (local
128 × 128, σn = 20). (a) Original image; (b) noisy image;
(c) adaptive threshold+DWT; (d) HMT; (e) Wang’s CWT;
(f) our method.

Table 1. PSNR [dB] Results for Several Methods

Test Images σ Noisy Adaptive Threshold+DWT[5] HMT[3] Wang’s CWT[9] BiShrink+CWT[4] Our Method

Lena 10 28.165 33.554 33.84 34.88 34.77 35.389

20 22.136 30.191 30.39 31.70 31.71 32.359

30 18.627 28.212 28.35 29.56 29.85 30.502

Barbara 10 28.159 30.676 31.36 33.26 31.30 33.677

20 22.144 26.981 27.80 29.75 27.78 30.007

30 18.641 24.652 25.11 27.64 25.62 28.041

Boat 10 28.155 31.961 32.28 32.77 32.85 33.19

20 22.148 28.557 28.84 29.78 29.81 29.911

30 18.638 26.438 26.83 27.72 27.99 28.163
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denoising techniques, both in PSNR and visual effect.
We obtained these results by simply exploit the depen-
dencies between coefficients and their 8-neighborhood of
the intra-scale (i.e. the local context correlations), and
the dependencies across the scales. It is expected that
the results can be further improved if the other depen-
dencies between coefficients and its other neighbors, and
the more suitable statistical model are exploited.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant No. 60573027. F.
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